Multiple solutions to multi-critical Schrödinger equations

نویسندگان

چکیده

Abstract In this article, we investigate the existence of multiple positive solutions to following multi-critical Schrödinger equation: (0.1) − Δ u + λ V ( x ) = μ ∣ p 2 ∑ i 1 k N α ∗ width="1.0em" width="0.1em" in width="0.33em" mathvariant="double-struck">R , ∈ H \left\{\begin{array}{l}-\Delta u+\lambda V\left(x)u=\mu | u{| }^{p-2}u+\mathop{\displaystyle \sum }\limits_{i=1}^{k}\left(| x{| }^{-\left(N-{\alpha }_{i})}\ast }^{{2}_{i}^{\ast }})| }-2}u\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\hspace{1.0em}\\ u\hspace{0.33em}\in {H}^{1}\left({{\mathbb{R}}}^{N}),\hspace{1.0em}\end{array}\right. where xmlns:m="http://www.w3.org/1998/Math/MathML"> ≥ 4 \lambda ,\mu \in {{\mathbb{R}}}^{+},N\ge 4 , and {2}_{i}^{\ast }=\frac{N+{\alpha }_{i}}{N-2} with < N-4\lt {\alpha }_{i}\lt N , … i=1,2,\ldots ,k are critical exponents min mathvariant="normal">min { : } 2\lt p\lt {2}_{\min }^{\ast }={\rm{\min }}\left\{{2}_{i}^{\ast }:i=1,2,\ldots ,k\right\} . Suppose that mathvariant="normal">Ω mathvariant="normal">int 0 ⊂ \Omega ={\rm{int}}\hspace{0.33em}{V}^{-1}\left(0)\subset {{\mathbb{R}}}^{N} is a bounded domain, show for large, problem possesses at least mathvariant="normal">cat {{\rm{cat}}}_{\Omega }\left(\Omega ) solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$

‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.

متن کامل

Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions

We consider for the integration of coupled nonlinear Schrödinger equations with periodic plane wave solutions a splitting method from the class of symplectic integrators and the multi-symplectic six-point scheme which is equivalent to the Preissman scheme. The numerical experiments show that both methods preserve very well the mass, energy and momentum in long-time evolution. The local errors i...

متن کامل

Generalized solitary wave solutions for the Klein-Gordon-Schrödinger equations

Some new generalized solitary solutions of the Klein–Gordon–Schrödinger equations are obtained using the Exp-function method, which include some known solutions obtained by the F-expansion method and the homogeneous balance method in the open literature as special cases. It is shown that the Exp-function method is a straight, concise, reliable and promising mathematical tool for solving nonline...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Nonlinear Studies

سال: 2022

ISSN: ['1536-1365', '2169-0375']

DOI: https://doi.org/10.1515/ans-2022-0014